GATE Syllabus Mechanical Engineering ME

Mechanical Engineering is the most preferred stream amongst theGATE aspirants. GATE 2020/2021 Exam is a gateway to secure admissions for PG programs and career opportunities in PSU companies. IIT Delhi is the conducting body for GATE 2020 Exam.
Before starting the GATE preparation, every aspirant should understand the GATE Mechanical Syllabus Thoroughly. All the questions in GATE Mechanical (ME) exam will be based on GATE Mechanical Engineering Syllabus.
So, every GATE aspirants must be thorough with the GATE ME syllabus and complete each and every topic diligently.

Verbal Ability:

Grammar, Vocabulary, Coding-Decoding & Series, Directions, Blood Relations, Arrangements, Syllogism, Inference & Assumptions, Clocks and Puzzles.

Numerical Ability:

Fundamentals, Equations, Percentage, Averages, Ratio & Propotions, Mixture and Alligations, Data Interpretation & Data Suffiency, Time, Speed & Distance, Time & Work, Set Theory & Venn Diagrams, Progression, Functions & Graphs, Logarthims, Permutations and Combinations, Probability, Geometry & Mensuration.

Linear Algebra:

Matrix Algebra, Systems of linear equations, Eigen values and Eigen vectors.


Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals,
applications of Gauss, Stokes and Green’s theorems.

Differential equations:

First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace’s equations.

complex variables:

Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem and integral formula; Taylor and Laurent series.

Probability and Statistics:

Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.

Numerical Methods:

Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations.

Engineering Mechanics:

Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.

Mechanics of Materials:

Stress and strain, elastic constants, Poisson’s ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain
gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines:

Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.


Free and forced vibration of single degree of freedom systems; effect of damping; vibration isolation; resonance, critical speeds of shafts.

Machine Design:

Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Fluid Mechanics:

Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings.


Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler’s charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer
correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann law, Wien’s displacement law, black and grey surfaces, view factors, radiation network analysis.


Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.


Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines.

Engineering Materials:

Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes:

Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working
processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations:

Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, design of jigs and fixtures.

Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing
and assembly.

Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning.

Inventory Control:

Deterministic models; safety stock inventory control systems.

Operations Research:

Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

GATE Subject Wise Weightage for Mechanical

Along with GATE Exam Syllabus, GATE Aspirants should also follow the GATE exam pattern to understand the weightage of every topic and score better marks in GATE Mechanical Exam.
With GATE Mechanical Weightage Analysis, students can put proper efforts for the subjects carrying more marks and prepare effectively.
Thorough understanding of subject wise weightage of Mechanical Subject can help GATE candidates achieve good rank in GATE exam and qualify for PG Programs or secure jobs in PSU Companies.

SUBJECTS GATE 2012 GATE 2013 GATE 2014 GATE 2015 GATE 2016 GATE 2017 GATE 2018 GATE 2019
Engineering Mathematics* 15% 15% 13% 12% 15% 14.5% 13.5% 14%
Engineering Mechanics 1% 3% 5% 6% 4.6% 3% 3.5% 4%
Mechanics Of Material* 11% 5% 6% 8% 11.6% 9% 11% 9%
Machine Design 8% 7% 2% 4% 2.6% 6.5% 4% 6%
Theory Of Machines & Vibrations* 5% 8% 13% 9% 7.3% 8.5% 7.5% 9.5%
Fluid Mechanics 6% 6% 9% 7% 8% 9.5% 9.5% 7%
Thermal Engineering* 12% 10% 11% 12% 11.3% 10% 11% 9.5%
Heat Transfer 6% 10% 6% 6% 7.3% 5.5% 3.5% 6.5%
Manufacturing Engineering* 16% 15% 16% 16% 14.3% 14% 16.5% 15%
Industrial Engineering 5% 6% 4% 5% 4.5% 4.5% 5% 4.5%
General Aptitude* 15% 15% 15% 15% 15% 15% 15% 15%
* Important Subjects

GATE Qualifying Cut off Marks Mechanical

How much GATE Score is required for IIT or PSU or NIT? It’s important to know the GATE Qualifying Cut offMarks for preparing GATE Exam.
Check the Cut Off marks for Qualifying GATE Exam,

  2019 2018 2017
ME 34.1 30.7 22.7 34.7 31.2 23.1 32.87 29 21

More from us:

Boost your GATE 2020 preparation with GATE Mechanical Test Series.

Fastest Growing GATE Coaching Institute in India.

Download THE GATE ACADEMY, Best GATE Exam App for Preparation!

Related Courses

Copyright 2018. All rights reserved.