GATE-2014

Question Paper

&

Answer Keys
Index

1. Question Paper Analysis
2. Question Paper & Answer keys
ANALYSIS OF GATE 2014
Mechanical Engineering

- General Aptitude: 15%
- Engineering Mathematics: 13%
- Engineering Mechanics: 6%
- Strength of Materials: 6%
- Theory of Machines: 12%
- Fluid Mechanics: 9%
- Heat Transfer: 6%
- Manufacturing Engineering: 16%
- Thermodynamics: 11%
- Industrial Engineering: 4%
- Machine Design: 2%
- Thermodynamics: 11%
- Machine Design: 2%
- General Aptitude: 15%
- Engineering Mathematics: 13%
- Engineering Mechanics: 6%
- Strength of Materials: 6%
- Theory of Machines: 12%
- Fluid Mechanics: 9%
- Heat Transfer: 6%
- Manufacturing Engineering: 16%
- Thermodynamics: 11%
- Industrial Engineering: 4%
- Machine Design: 2%
GATE-2014- ME

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>NO OF QUESTION</th>
<th>Topics Asked in Paper</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Mechanics</td>
<td>1M:2 2M:2</td>
<td>Calculus, Statics, Dynamics</td>
<td>6</td>
</tr>
<tr>
<td>Strength of Materials</td>
<td>1M:2 2M:2</td>
<td>Numerical Method, Linear Algebra, Deflection of beams, Simple Stress & Strain</td>
<td>6</td>
</tr>
<tr>
<td>Theory of Machines</td>
<td>1M:2 2M:5</td>
<td>Vibration, Mechanism, Gear Trains</td>
<td>12</td>
</tr>
<tr>
<td>Machine Design</td>
<td>1M:0 2M:1</td>
<td>Design of Bearings</td>
<td>2</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>1M:1 2M:4</td>
<td>Boundary Layer, Flow Through pipes, Slope & Deflection of beams</td>
<td>9</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>1M:2 2M:2</td>
<td>Convection, Conduction</td>
<td>6</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>1M:3 2M:4</td>
<td>Basic thermodynamics, Relations, IC Engine, Power Engineering</td>
<td>11</td>
</tr>
<tr>
<td>Manufacturing Engineering</td>
<td>1M:6 2M:5</td>
<td>Metrology and inspection, Metal cutting: Dynamics, Computer integrated Manufacturing, Joining Process, Engg Materials, Machining and Machine operation</td>
<td>16</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>1M:2 2M:1</td>
<td>Inventory Control, Production planning & Control</td>
<td>4</td>
</tr>
<tr>
<td>General Aptitude</td>
<td>1M:5 2M:5</td>
<td>Verbal Ability, Numerical Ability</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
All India GATE 2014

Mechanical Engineering [Set – 2]

Q.1 - Q.25 Carry One Mark each.

1. One of the eigenvectors of the matrix \[
\begin{bmatrix}
-5 & 2 \\
-9 & 6
\end{bmatrix}
\] is
 (A) \(\begin{bmatrix}
-1 \\
1
\end{bmatrix}\)
 (B) \(\begin{bmatrix}
-2 \\
9
\end{bmatrix}\)
 (C) \(\begin{bmatrix}
2 \\
-1
\end{bmatrix}\)
 (D) \(\begin{bmatrix}
1 \\
1
\end{bmatrix}\)
 [Ans. D]

2. \(\lim_{x \to 0} \left(e^{2x} - 1 \right) \sin(4x) \) is equal to
 (A) 0
 (B) 0.5
 (C) 1
 (D) 2
 [Ans. B]

3. Curl of vector \(\vec{F} = x^2 z^2 \hat{i} - 2xy^2 \hat{j} + 2y^2 z^3 \hat{k}\) is
 (A) \((4yz^3 + 2xy^2) \hat{i} + 2x^2 z \hat{j} - 2y^2 z^2 \hat{k}\)
 (B) \((4yz^3 + 2xy^2) \hat{i} + 2x^2 z \hat{j} - 2y^2 z^2 \hat{k}\)
 (C) \((2xz^2 - 4xyz) \hat{i} + 6y^2 z^2 \hat{k}\)
 (D) \((2xz^2 - 4xyz) \hat{i} + 6y^2 z^2 \hat{k}\)
 [Ans. A]

4. A box contains 25 parts of which 10 are defective. Two parts are being drawn simultaneously in a random manner from the box. The probability of both the parts being good is
 (A) \(\frac{7}{20}\)
 (B) \(\frac{42}{125}\)
 (C) \(\frac{25}{29}\)
 (D) \(\frac{5}{9}\)
 [Ans. A]

5. The best approximation of the minimum value attained by \(e^{-x} \sin(100x)\) for \(x \geq 0\) is ______
 [Ans. *] Range – 1.00 to –0.94

6. A steel cube, with all faces free to deform, has Young's modulus, \(E\), Poisson's ratio, \(\nu\), and coefficient of thermal expansion, \(\alpha\). The pressure (hydrostatic stress) developed within the cube, when it is subjected to a uniform increase in temperature, \(\Delta T\), is given by
 (A) 0
 (B) \(\frac{\alpha(\Delta T)E}{1-2\nu}\)
 (C) \(-\frac{\alpha(\Delta T)E}{1-2\nu}\)
 (D) \(\frac{\alpha(\Delta T)E}{3(1-2\nu)}\)
 [Ans. A]
7. A two member truss ABC is shown in the figure. The force (in kN) transmitted in member AB is ____

[Ans. *] Range 18 to 22

8. A 4-bar mechanism with all revolute pairs has link lengths \(l_f = 20 \text{ mm}, l_{in} = 40 \text{ mm}, l_{co} = 50 \text{ mm} \) and \(l_{out} = 60 \text{ mm} \). The suffixes 'f', 'in', 'co' and 'out' denote the fixed link, the input link, the coupler and output link respectively. Which one of the following statements is true about the input and output links?
(A) Both links can execute full circular motion
(B) Both links cannot execute full circular motion
(C) Only the output link cannot execute full circular motion
(D) Only the input link cannot execute full circular motion
[Ans. A]

9. In vibration isolation, which one of the following statements is NOT correct regarding Transmissibility (T)?
(A) T is nearly unity at small excitation frequencies
(B) T can be always reduced by using higher damping at any excitation frequency
(C) T is unity at the frequency ratio of \(\sqrt{2} \)
(D) T is infinity at resonance for undamped system
[Ans. B]

10. In a structure subjected to fatigue loading, the minimum and maximum stresses developed in a cycle are 200 MPa and 400 MPa respectively. The value of stress amplitude (in MPa) is ______
[Ans. *] Range 99 to 101

11. A thin plate of uniform thickness is subject to pressure as shown in the figure below

Under the assumption of plane stress, which one of the following is correct?
(A) Normal stress is zero in the z-direction
(B) Normal stress is tensile in the z-direction
12. For laminar forced convection over a flat plate, if the free stream velocity increases by a factor of 2, the average heat transfer coefficient
(A) Remains same
(B) Decreases by a factor of $\sqrt{2}$
(C) Rises by a factor of $\sqrt{2}$
(D) Rises by a factor of 4
[Ans. C]

13. The thermal efficiency of an air-standard Brayton cycle in terms of pressure ratio r_p and $\gamma = \frac{c_p}{c_v}$ is given by
(A) $1 - \frac{1}{r_p^{\gamma - 1}}$
(B) $1 - \frac{1}{r_p^{\gamma}}$
(C) $1 - \frac{1}{r_p^{\gamma - 1}}$
(D) $1 - \frac{1}{r_p^{(\gamma - 1)/\gamma}}$
[Ans. D]

14. For an incompressible flow field, \vec{V}, which one of the following conditions must be satisfied?
(A) $\nabla . \vec{V} = 0$
(B) $\nabla \times \vec{V} = 0$
(C) $(\vec{V} . \nabla) \vec{V} = 0$
(D) $\frac{\partial \vec{V}}{\partial t} (\vec{V} . \nabla) \vec{V} = 0$
[Ans. A]

15. A pure substance at 8 MPa and 400 °C is having a specific internal energy of 2864 kJ/kg and a specific volume of 0.03432 m3/kg. Its specific enthalpy (in kJ/kg) is _______
[Ans. *] Range 3135 to 3140

16. In a heat exchanger, it is observed that $\Delta T_1 = \Delta T_2$, where ΔT_1 is the temperature difference between the two single phase fluid streams at one end and ΔT_2 is the temperature difference at the other end. This heat exchanger is
(A) a condenser
(B) an evaporator
(C) a counter flow heat exchanger
(D) a parallel flow heat exchanger
[Ans. C]

17. The difference in pressure (in N/m2) across an air bubble of diameter 0.001 m immersed in water (surface tension = 0.072 N/m) is ___________
[Ans. *] Range 287 to 289

18. If there are m source and n destinations in a transportation matrix, the total number of basic variables in a basic feasible solution is
(A) $m + n$
(B) $m + n + 1$
(C) $m + n - 1$
(D) m
[Ans. C]
19. A component can be produced by any of the four processes I, II, III and IV. The fixed cost and the variable cost for each of the processes are listed below. The most economical process for producing a batch of 100 pieces is

<table>
<thead>
<tr>
<th>Process</th>
<th>Fixed Cost (in ₹)</th>
<th>Variable cost per piece (in ₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

(A) I (B) II (C) III (D) IV

[Ans. B]

20. The flatness of a machine bed can be measured using

(A) Vernier calipers (B) Auto collimator
(C) Height gauge (D) Tool maker’s microscope

[Ans. B]

21. A robot arm PQ with end coordinates P(0,0) and Q(2,5) rotates counter clockwise about P in the XY plane by 90°. The new coordinate pair of the end point Q is

(A) (−2, 5) (B) (−5, 2) (C) (−5, −2) (D) (2, −5)

[Ans. B]

22. Match the Machine Tools (Group A) with the probable Operations (Group B):

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Centre Lathe</td>
<td>I. Slotting</td>
</tr>
<tr>
<td>Q. Milling</td>
<td>II. Counter-boring</td>
</tr>
<tr>
<td>R. Grinding</td>
<td>III. Knurling</td>
</tr>
<tr>
<td>S. Drilling</td>
<td>IV. Dressing</td>
</tr>
</tbody>
</table>

(A) P-1, Q-2, R-4, S-3 (B) P-2, Q-1, R-4, S-3 (C) P-3, Q-1, R-4, S-2 (D) P-3, Q-4, R-2, S-1

[Ans. C]

23. The following four unconventional machining processes are available in a shop floor. The most appropriate one to drill a hole of square cross section of 6 mm × 6 mm and 25 mm deep is

(A) Abrasive Jet Machining (B) Plasma Arc Machining (C) Laser Beam Machining (D) Electro Discharge Machining

[Ans. D]

24. The relationship between true strain (ε_T) and engineering strain (ε_E) in a uniaxial tension test is given as

(A) $\varepsilon_E = \ln (1 + \varepsilon_T)$ (B) $\varepsilon_E = \ln (1 - \varepsilon_T)$
(C) $\varepsilon_T = \ln (1 + \varepsilon_E)$ (D) $\varepsilon_T = \ln (1 - \varepsilon_E)$

[Ans. C]
25. With respect to metal working, match Group A with Group B:

Group A Group B
P. Defect in extrusion I. alligatoring
Q. Defect in rolling II. scab
R. Product of skew rolling III. fish tail
S. Product of rolling through cluster mill IV. seamless tube

(A) P-II, Q-III, R-VI, S-V (C) P-III, Q-I, R-IV, S-VI
(B) P-III, Q-I, R-VI, S-V (D) P-I, Q-II, R-V, S-VI

[Ans. B]

Q.26 - Q.55 Carry Two Marks each.

26. An analytic function of a complex variable \(z = x + i \, y \) is expressed as \(f(z) = u(x, y) + i \, v(x, y) \), where \(i = \sqrt{-1} \). If \(u(x, y) = 2 \, x \, y \), then \((x, y) \) must be

(A) \(x^2 + y^2 + \) constant
(B) \(x^2 - y^2 + \) constant

[Ans. C]

27. The general solution of the differential equation \(\frac{dy}{dx} = \cos(x + y) \), with \(c \) as a constant, is

(A) \(y + \sin(x + y) = x + c \)
(B) \(\tan\left(\frac{x+y}{2}\right) = y + c \)

[Ans. D]

28. Consider an unbiased cubic dice with opposite faces coloured identically and each face coloured red, blue or green such that each colour appears only two times on the dice. If the dice is thrown thrice, the probability of obtaining red colour on top face of the dice at least twice is ______

[Ans. *] Range 0.25 to 0.27

29. The value of \(\int_{2.5}^{4} \ln(x) \, dx \) calculated using the Trapezoidal rule with five subintervals is ______

[Ans. *] Range 1.74 to 1.76

30. The flexural rigidity (EI) of a cantilever beam is assumed to be constant over the length of the beam shown in figure. If a load \(P \) and bending moment \(PL/2 \) are applied at the free end of the beam then the value of the slope at the free end is

(A) \(\frac{1 \, PL^2}{2 \, EI} \)
(B) \(\frac{PL^2}{EI} \)

[Ans. B]
31. A cantilever beam of length, L, with uniform cross-section and flexural rigidity, EI, is loaded uniformly by a vertical load, w per unit length. The maximum vertical deflection of the beam is given by

- (A) $\frac{wL^4}{8EI}$
- (B) $\frac{wL^4}{16EI}$
- (C) $\frac{wL^4}{4EI}$
- (D) $\frac{wL^4}{24EI}$

[Ans. A]

32. For the three bolt system shown in the figure, the bolt material has shear yield strength of 200 MPa. For a factor of safety of 2, the minimum metric specification required for the bolt is

- (A) M8
- (B) M10
- (C) M12
- (D) M16

[Ans. B]

33. Consider a flywheel whose mass M is distributed almost equally between a heavy, ring-like rim of radius R and a concentric disk-like feature of radius $R/2$. Other parts of the flywheel, such as spokes, etc, have negligible mass. The best approximation for α, if the moment of inertia of the flywheel about its axis of rotation is expressed as aMR^2, is _______

[Ans.*] Range 0.55 to 0.57

34. What is the natural frequency of the spring mass system shown below? The contact between the block and the inclined plane is frictionless. The mass of the block is denoted by m and the spring constants are denoted by k_1 and k_2 as shown below.

- (A) $\sqrt{\frac{k_1+k_2}{2m}}$
- (B) $\sqrt{\frac{k_1+k_2}{4m}}$
- (C) $\sqrt{\frac{k_2-k_1}{m}}$
- (D) $\sqrt{\frac{k_1+k_2}{m}}$

[Ans. D]
35. A disc clutch with a single friction surface has coefficient of friction equal to 0.3. The maximum pressure which can be imposed on the friction material is 1.5 MPa. The outer diameter of the clutch plate is 200 mm and its internal diameter is 100 mm. Assuming uniform wear theory for the clutch plate, the maximum torque (in N.m) that can be transmitted is ______

[Ans. *] Range 529 to 532

36. A truck accelerates up a 10° incline with a crate of 100 kg. Value of static coefficient of friction between the crate and the truck surface is 0.3. The maximum value of acceleration (in m/s²) of the truck such that the crate does not slide down is ______

[Ans. *] Range 1.0 to 1.3

37. Maximum fluctuation of kinetic energy in an engine has been calculated to be 2600 J. Assuming that the engine runs at an average speed of 200 rpm, the polar mass moment of inertia (in kg.m²) of a flywheel to keep the speed fluctuation within ±0.5% of the average speed is ______

[Ans. *] Range 590 to 595

38. Consider the two states of stress as shown in configurations I and II in the figure below. From the standpoint of distortion energy (von-Mises) criterion, which one of the following statements is true?

- (A) I yields after II
- (B) II yields after I
- (C) Both yield simultaneously
- (D) Nothing can be said about their relative yielding

[Ans. C]

39. A rigid link PQ of length 2 m rotates about the pinned end Q with a constant angular acceleration of 12 rad/s². When the angular velocity of the link is 4 rad/s, the magnitude of the resultant acceleration (in m/s²) of the end P is ______

[Ans. *] Range 39 to 41

40. A spur pinion of pitch diameter 50 mm rotates at 200 rad/s and transmits 3 kW power. The pressure angle of the tooth of the pinion is 20°. Assuming that only one pair of the teeth is in contact, the total force (in newton) exerted by a tooth of the pinion on the tooth on a mating gear is ______

[Ans. *] Range 638 to 639
41. A spherical balloon with a diameter of 10 m, shown in the figure below is used for advertisements. The balloon is filled with helium \(R_{He} = 2.08 \text{ kJ/kg.K} \) at ambient conditions of 15°C and 100 kPa. Assuming no disturbances due to wind, the maximum allowable weight (in newton) of balloon material and rope required to avoid the fall of the balloon \(R_{air} = 0.289 \text{ kJ/kg.K} \) is ______

[Ans. *] Range 5300 to 5330

42. A hemispherical furnace of 1 m radius has the inner surface (emissivity, \(\varepsilon = 1 \)) of its roof maintained at 800 K, while its floor (\(\varepsilon = 0.5 \)) is kept at 600 K. Stefan-Boltzmann constant is \(5.668 \times 10^{-8} \text{ W/m}^2\text{K}^4 \). The net radiative heat transfer (in kW) from the roof to the floor is ______

[Ans. *] Range 24.0 to 25.2

43. Water flows through a 10 mm diameter and 250 m long smooth pipe at an average velocity of 0.1 m/s. The density and the viscosity of water are 997 kg/m\(^3\) and \(855 \times 10^{-6} \text{ N.s/m}^2 \) respectively. Assuming fully-developed flow, the pressure drop (in Pa) in the pipe is ______

[Ans. *] Range 6800 to 6900

44. A material P of thickness 1 mm is sandwiched between two steel slabs, as shown in the figure below. A heat flux \(10 \text{ kW/m}^2 \) is supplied to one of the steel slabs as shown. The boundary temperatures of the slabs are indicated in the figure. Assume thermal conductivity of this steel is \(10 \text{ W/m.K} \). Considering one-dimensional steady state heat conduction for the configuration, the thermal conductivity \((k, \text{ in W/m.K}) \) of material P is ______

[Ans. *] Range 0.09 to 0.11
45. Consider laminar flow of water over a flat plate of length 1 m. If the boundary layer thickness at a distance of 0.25 m from the leading edge of the plate is 8 mm, the boundary layer thickness (in mm), at a distance of 0.75 m, is ______
[Ans. *] Range 13.5 to 14.2

46. In an ideal Brayton cycle, atmospheric air (ratio of specific heats, $C_p/C_v = 1.4$, specific heat at constant pressure = 1.005 kJ/kg.K) at 1 bar and 300 K is compressed to 8 bar. The maximum temperature in the cycle is limited to 1280 K. If the heat is supplied at the rate of 80 MW, the mass flow rate (in kg/s) of air required in the cycle is ______
[Ans. *] Range 105 to 112

47. Steam at a velocity of 10 m/s enters the impulse turbine stage with symmetrical blading having blade angle 30°. The enthalpy drop in the stage is 100 kJ. The nozzle angle is 20°. The maximum blade efficiency (in percent) is ______
[Ans. *] Range 85.1 to 89.9

48. In a concentric counter flow heat exchanger, water flows through the inner tube at 25°C and leaves at 42°C. The engine oil enters at 100°C and flows in the annular flow passage. The exit temperature of the engine oil is 50°C. Mass flow rate of water and the engine oil are 1.5 kg/s and 1 kg/s, respectively. The specific heat of water and oil are 4178 J/kg.K and 2130 J/kg.K, respectively. The effectiveness of this heat exchanger is ______
[Ans. *] Range 0.65 to 0.67

49. A heat pump with refrigerant R22 is used for space heating between temperature limits of −20°C and 25°C. The heat required is 200 MJ/h. Assume specific heat of vapour at the time of discharge as 0.98 kJ/kg.K. Other relevant properties are given below. The enthalpy (in kJ/kg) of the refrigerant at isentropic compressor discharge is ______

<table>
<thead>
<tr>
<th>Saturation temperature</th>
<th>Pressure (MN/m²)</th>
<th>Specific enthalpy (kJ/kg)</th>
<th>Specific entropy (kJ/kg.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{sat} °C</td>
<td></td>
<td>h_f</td>
<td>h_g</td>
</tr>
<tr>
<td>−20</td>
<td>0.2448</td>
<td>177.21</td>
<td>397.53</td>
</tr>
<tr>
<td>25</td>
<td>1.048</td>
<td>230.07</td>
<td>413.02</td>
</tr>
</tbody>
</table>

[Ans. *] Range 430 to 440

50. A project has four activities P, Q, R and S as shown below.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal duration (days)</th>
<th>Predecessor</th>
<th>Cost slope (₹/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>Q</td>
<td>7</td>
<td>P</td>
<td>100</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>P</td>
<td>400</td>
</tr>
<tr>
<td>S</td>
<td>5</td>
<td>R</td>
<td>200</td>
</tr>
</tbody>
</table>

The normal cost of the project is Rs. 10,000/- and the overhead cost is Rs. 200/- per day. If the project duration has to be crashed down to 9 days, the total cost (in Rupees) of the project is ______
[Ans. *] Range 12490 to 12510
51. Consider the following data with reference to elementary deterministic economic order quantity model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual demand of an item</td>
<td>100000</td>
</tr>
<tr>
<td>Unit price of the item (in ₹)</td>
<td>10</td>
</tr>
<tr>
<td>Inventory carrying cost per unit per year (in ₹)</td>
<td>1.5</td>
</tr>
<tr>
<td>Unit order cost (in ₹)</td>
<td>30</td>
</tr>
</tbody>
</table>

The total number of economic orders per year to meet the annual demand is _______
[Ans. *] Range 49 to 51

52. For the CNC part programming, match Group A with Group B:

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. circular interpolation, counter clock wise</td>
<td>I. G02</td>
</tr>
<tr>
<td>Q. dwell</td>
<td>II. G03</td>
</tr>
<tr>
<td>R. circular interpolation, clock wise</td>
<td>III. G04</td>
</tr>
<tr>
<td>S. point to point countering</td>
<td>IV. G00</td>
</tr>
</tbody>
</table>

(A) P-II, Q-III, R-I, S-IV
(B) P-I, Q-III, R-II, S-IV
(C) P-I, Q-IV, R-II, S-III
(D) P-II, Q-I, R-III, S-IV
[Ans. A]

53. A mild steel plate has to be rolled in one pass such that the final plate thickness is 2/3rd of the initial thickness, with the entrance speed of 10 m/min and roll diameter of 500 mm. If the plate widens by 2% during rolling, the exit velocity (in m/min) is _______
[Ans. *] Range 14.6 to 14.8

54. A hole of 20 mm diameter is to be drilled in a steel block of 40 mm thickness. The drilling is performed at rotational speed of 400 rpm and feed rate of 0.1 mm/rev. The required approach and over run of the drill together is equal to the radius of drill. The drilling time (in minute) is

(A) 1.00
(B) 1.25
(C) 1.50
(D) 1.75
[Ans. B]

55. A rectangular hole of size 100 mm × 50 mm is to be made on a 5 mm thick sheet of steel having ultimate tensile strength and shear strength of 500 MPa and 300 MPa, respectively. The hole is made by punching process. Neglecting the effect of clearance, the punching force (in kN) is

(A) 300
(B) 450
(C) 600
(D) 750
[Ans. B]

General Aptitude [Set – 4]
Q.56 - Q.60 Carry One Mark each.

56. Choose the most appropriate word from the options given below to complete the following sentence.

Communication and interpersonal skills are _______ important in their own ways.

(A) each
(B) both
(C) all
(D) either
[Ans. B]
57. Which of the options given below best completes the following sentence? She will feel much better if she ____________
 (A) will get some rest (C) will be getting some rest
 (B) gets some rest (D) is getting some rest
 [Ans. B]

58. Choose the most appropriate pair of words from the options given below to complete the following sentence. She could not ____ the thought of ____ the election to her bitter rival.
 (A) bear, loosing (C) bear, losing
 (B) bare, loosing (D) bare, losing
 [Ans. C]

59. A regular die has six sides with numbers 1 to 6 marked on its sides. If a very large number of throws show the following frequencies of occurrence: 1 → 0.167; 2 → 0.167; 3 → 0.152; 4 → 0.166; 5 → 0.168; 6 → 0.180. We call this die
 (A) irregular (C) Gaussian
 (B) biased (D) insufficient
 [Ans. B]

60. Fill in the missing number in the series.
 2 3 6 15 ---- 157.5 630
 [Ans. *] Range: 45 to 45

Q. 61 – Q. 65 carry two marks each.

61. Find the odd one in the following group
 (A) Q, W, Z, B (C) W, C, G, J
 (B) B, H, K, M (D) M, S, V, X
 [Ans. C]

62. Lights of four colors (red, blue, green, yellow) are hung on a ladder. On every step of the ladder there are two lights. If one of the lights is red, the other light on that step will always be blue. If one of the lights on a step is green, the other light on that step will always be yellow. Which of the following statements is not necessarily correct?
 (A) The number of red lights is equal to the number of blue lights
 (B) The number of green lights is equal to the number of yellow lights
 (C) The sum of the red and green lights is equal to the sum of the yellow and blue lights
 (D) The sum of the red and blue lights is equal to the sum of the green and yellow lights
 [Ans. D]

63. The sum of eight consecutive odd numbers is 656. The average of four consecutive even numbers is 87. What is the sum of the smallest odd number and second largest even number?
 [Ans. *] Range: 163 to 163
64. The total exports and revenues from the exports of a country are given in the two charts shown below. The pie chart for exports shows the quantity of each item exported as a percentage of the total quantity of exports. The pie chart for the revenues shows the percentage of the total revenue generated through export of each item. The total quantity of exports of all the items is 500 thousand tonnes and the total revenues are 250 crore rupees. Which item among the following has generated the maximum revenue per kg?

(A) Item 2
(B) Item 3
(C) Item 6
(D) Item 5
[Ans. D]

65. It takes 30 minutes to empty a half–full tank by draining it at a constant rate. It is decided to simultaneously pump water into the half–full tank while draining it. What is the rate at which water has to be pumped in so that it gets fully filled in 10 minutes?

(A) 4 times the draining rate
(B) 3 times the draining rate
(C) 2.5 times the draining rate
(D) 2 times the draining rate
[Ans. A]