

Q.11 - Q.20 Carry Two Mark each.

11. A signal x(t) is a triangular wave as shown below.

Then Fourier transform $e^{+j2t}x(t)$ is

- (A) $2 \text{ sa}^2 [\omega + 2]$
- (B) $4 \text{ sa}^2[\omega 2]$

12. The Fourier transform of signal x(t) is

- (A) $32 \text{ sa}[4\omega] + 16 \text{ sa}[2\omega]$
- (B) $16 \text{ sa}[4\omega] 12 \text{ sa}[2\omega]$

- (C) $32 \text{ sa}[4\omega] 8 \text{ sa}[2\omega]$
- (D) $32 \text{ sa}[2\omega] 8 \text{ sa}[4\omega]$
- 13. The signal $x_1(t) = e^{-2t}u(t)$ at $x_2(t) = e^{-3t}u(t)$. If $y(t) = x_1(t) * x_2(t)$ the $|y(\omega)|$ at $\omega = 2rad/sec$ is
 - $(A) \frac{1}{\sqrt{108}}$
 - (B) $\frac{1}{\sqrt{100}}$

- (C) $\frac{1}{\sqrt{104}}$
- (D) $\frac{1}{\sqrt{101}}$
- 14. The Fourier transform of f(t) is $F(\omega)$. If $f(\omega) = \frac{5}{\omega} e^{+2j\omega} \sin[5\omega]$. Then its increase Fourier transform f(1) is _____
- 15. The complex exponential power form of Fourier series of x(t) is

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T_0}kt}$$

If $x(t) = \sum_{n=-\infty}^{\infty} 2\delta[t-4n]$, then the value of C_k is _____?

16. A continuous time signal $x(t) = 2\cos\left(2\pi t - \frac{\pi}{6}\right) + 4\sin\left[6\pi t - \frac{\pi}{3}\right]$

The fundament frequency (ω_0) of the signal (x(t)) is

(A) 2π

(C) π

(B) $\pi/4$

- (D) $\pi/2$
- 17. Let x(t) be the periodic signal with time period T. Let $y(t) = x[t+t_0]$ The Fourier series coefficients of x(t) and y(t) are denoted by a_n and b_n . If T=4 and $t_0=2$,
 - then b_n is equal to _____is (A) $a_n(-1)^{n+1}$

(C) $a_n(+1)^{2n+1}$

(B) $a_n(-1)^n$

- (D) $a_n(-1+n)^n$
- 18. If a signal $x(t) = \frac{1}{\pi} \frac{\sin(t)}{t}$, The z(t) = x(t). x(t), the Fourier transform of z(t) is ______

(C)

(B)

(D)

- 19. If the continuous time signal x(t) is Real and odd. Then the fourier transform signal x(t)
 - (A) Real and odd

(C) Imaginary and odd

(B) Real and Even

- (D) Imaginary and even
- 20. A continuous time signal $x(t) = \frac{\sin(8\pi t)}{8\pi t}$ the value of $\int_{-\infty}^{\infty} |x^2(t)| dt$ is_____